An optimized framework for quantitative magnetization transfer imaging of the cervical spinal cord in vivo
نویسندگان
چکیده
PURPOSE To develop a framework to fully characterize quantitative magnetization transfer indices in the human cervical cord in vivo within a clinically feasible time. METHODS A dedicated spinal cord imaging protocol for quantitative magnetization transfer was developed using a reduced field-of-view approach with echo planar imaging (EPI) readout. Sequence parameters were optimized based in the Cramer-Rao-lower bound. Quantitative model parameters (i.e., bound pool fraction, free and bound pool transverse relaxation times [ T2F, T2B], and forward exchange rate [kFB ]) were estimated implementing a numerical model capable of dealing with the novelties of the sequence adopted. The framework was tested on five healthy subjects. RESULTS Cramer-Rao-lower bound minimization produces optimal sampling schemes without requiring the establishment of a steady-state MT effect. The proposed framework allows quantitative voxel-wise estimation of model parameters at the resolution typically used for spinal cord imaging (i.e. 0.75 × 0.75 × 5 mm3 ), with a protocol duration of ∼35 min. Quantitative magnetization transfer parametric maps agree with literature values. Whole-cord mean values are: bound pool fraction = 0.11(±0.01), T2F = 46.5(±1.6) ms, T2B = 11.0(±0.2) µs, and kFB = 1.95(±0.06) Hz. Protocol optimization has a beneficial effect on reproducibility, especially for T2B and kFB . CONCLUSION The framework developed enables robust characterization of spinal cord microstructure in vivo using qMT. Magn Reson Med 79:2576-2588, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
منابع مشابه
Quantitative Magnetization Transfer Imaging of Human Cervical Spinal Cord at 3T
Introduction: The goal of this study was to determine the feasibility of performing quantitative magnetization transfer (qMT) at high resolution in the spinal cord on clinical 3T systems. While magnetization transfer (MT) imaging has been used to assess brain tissue microstructure, similar studies in the human spinal cord have been limited. This can largely be attributed to the difficulties ass...
متن کاملAssociations between cervical cord gray matter damage and disability in patients with multiple sclerosis.
OBJECTIVES To assess in vivo the volume and the magnetization transfer magnetic resonance imaging (MRI)-detectable damage of the cervical cord gray matter in patients with relapsing-remitting multiple sclerosis (RRMS) and to evaluate whether such damage correlates with disability. DESIGN Cervical cord conventional and magnetization transfer MRI scans were acquired from 18 patients with RRMS (...
متن کاملP9: Cervical Spinal Cord Extraction in Patients with Multiple Sclerosis Using Magnetic Resonance Imaging for Measuring Cross-Sectional Area
Multiple sclerosis (MS) refers to the lesions that accumulate in the brain and spinal cord. Magnetic resonance imaging (MRI) is the most sensitive and versatile modality used to show changes in the tissues over time. There has been significant interest in evaluating the relationship between the brain atrophy and disease progression rather than the spinal cord atrophy. The cervical spinal cord h...
متن کاملCervical spondylosis: three-dimensional gradient-echo MR with magnetization transfer.
PURPOSE To compare a three-dimensional Fourier transform (3DFT) gradient-echo pulse sequence with magnetization transfer at a short echo time against standard 3DFT gradient-echo technique in the evaluation of cervical spondylosis, specifically addressing the effects of motion and susceptibility artifacts on the dimensions of the neural foramina and contrast at the cerebrospinal fluid (CSF)-spin...
متن کاملInvestigation of magnetization transfer ratio-derived pial and subpial abnormalities in the multiple sclerosis spinal cord.
Neuropathological studies in multiple sclerosis have suggested that meningeal inflammation in the brain may be linked to disease progression. Inflammation in the spinal cord meninges has been associated with axonal loss, a pathological substrate for disability. Quantitative magnetic resonance imaging facilitates the investigation of spinal cord microstructure by approximating histopathological ...
متن کامل